HP

 tam giác abc vuông ở A, AB=6cm AC=8cm đường cao ah phân giác bd. Gọi i là giao điểm của ah và bd
a, tính ad, dc 
b, chứng minh IH/IA=AD/DC
c, cứng minh ab.bi= bd.hb và tam giác aid cân 

NT
25 tháng 3 2021 lúc 20:56

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có 

BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{DC}{BC}\)(Định lí tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AD}{6}=\dfrac{DC}{10}\)

mà AD+DC=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{DC}{10}=\dfrac{AD+DC}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{DC}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\DC=5\left(cm\right)\end{matrix}\right.\)

Vậy: AD=3cm; DC=5cm

Bình luận (0)

Các câu hỏi tương tự
HV
Xem chi tiết
JL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TE
Xem chi tiết
H24
Xem chi tiết