JL

Cho tam giác ABC vuông tại A. Biết AB =6cm, AC = 8cm; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD. 

a) Tính AD, DC

b) Chứng minh IH/IA = AD/DC

c) Chứng minh AB.BI = BD.HB và tam giác AID cân.

NT
2 tháng 4 2021 lúc 19:56

b) Xét ΔABH có BI là đường phân giác ứng với cạnh AH(Gt)

nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\)(Tính chất đường phân giác của tam giác)(1)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\)(Tính chất đường phân giác của tam giác)(2)

Xét ΔABH vuông tại H và ΔCBA vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔABH∼ΔCBA(g-g)

Suy ra: \(\dfrac{AB}{CB}=\dfrac{BH}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)(3)

Từ (1), (2) và (3) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)(đpcm)

Bình luận (1)

Các câu hỏi tương tự
HV
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HD
Xem chi tiết