Bài 2: Định lý đảo và hệ quả của định lý Talet

SK

Tam giác ABC có đường cao AH. Đường thẳng d song song với BC, cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điểm B', C' và H' (h.16)

a) Chứng minh rằng :

                          \(\dfrac{AH'}{AH}=\dfrac{B'C'}{BC}\)

b) Áp dụng : Cho biết \(AH'=\dfrac{1}{3}AH\) và diện tích tam giác ABC là \(67,5cm^2\). Tính diện tích tam giác AB'C' ?

TM
22 tháng 4 2017 lúc 13:19

a) Chứng minh AH′AH = B′C′BC

Vì B'C' // với BC => B′C′BC = AB′AB (1)

Trong ∆ABH có BH' // BH => AH′AH = AB′BC (2)

Từ 1 và 2 => B′C′BC = AH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 13 AH

B′C′BC = AH′AH = 13 => B'C' = 13 BC

=> SAB’C’= 12 AH'.B'C' = 12.

Bình luận (0)
TN
21 tháng 2 2018 lúc 5:03

a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC

Vì B'C' // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)

Trong ∆ABH có BH' // BH => AH′AHAH′AH = AB′BCAB′BC (2)

Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH

b) B'C' // BC mà AH ⊥ BC nên AH' ⊥ B'C' hay AH' là đường cao của tam giác AB'C'.

Áp dụng kết quả câu a) ta có: AH' = 1313 AH

B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B'C' = 1313 BC

=> SAB’C’= 1212 AH'.B'C' = 1212.1313AH.1313BC

=>SAB’C’= (1212AH.BC)1919

mà SABC= 1212AH.BC = 67,5 cm2

Vậy SAB’C’= 1919.67,5= 7,5 cm2


Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
LN
Xem chi tiết
HN
Xem chi tiết
DT
Xem chi tiết
MH
Xem chi tiết