a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB∼ΔHEC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)
a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB∼ΔHEC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)
tam giác ABC có 3 đường cao AD BE CF cắt nhau tại H
A)c/m HFB đồng dạng HEC,HB*HE=HC*HF
B)EH*EB=EA*EC
C) CHO AB = 10 AD = 8 AC = 17 tính diện tích tam giác BHC.
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD=HB. HE=HC. HF
b) AHAD+BH.BE+CH.CF=(AB²+BC²+CA²)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Giải chi tiết
Cho tam giác ABC nhọn đường cao AD BE CF cắt nhau tại H .Chứng minh Tam giác HFB đồng dạng với tam giác HEC chứng minh BH.BE=BD.BC Chứng minh BH.BE + CH.CF =BC^2
cho tam giác ABC có 3 góc nhọn AB < AC . Các đường cao AD , BE , CF cắt nhau tại H .
1) c/m tam giác ACD đồng dạng với tam giác BCE
2) C/m HB . HE = HC . HF
3) cho AD = 12cm ; BD = 5cm ; CD = 9cm .tính AB và HC
Cho tam giác ABC có AB bằng 9cm, AC bằng 12 cm, BC bằng 15 cm Khẻ đường cao AD
a/ chứng minh: tam giác ADB đồng dạng với tam giác CAB
b/ Vẽ đường phân giác BE \((\)E thuộc AC\()\)
Tính EA,EC
c/ Chứng minh AD\(^2\) \(=\) BD. DC
d/ BE cắt AD tại I tính ID
Cho tam giác nhọn ABC ,3 đường cao AD,BE,CF cắt nhau tại H biết BE=5cm ,EC =4cm ,EA =2cm .Tính HC và HA
Cho tam giác ABC (AB<AC), 3 đường cao AD,BE,CF cắt nhau tại H
a, chứng minh rằng ta giác HFB đồng dạng với ta giác HEC
b, chứng minh \(BH\times BE=BF\times BA\)
c,\(\widehat{BFD}=\widehat{ACD}\)
d,M đối xứng với H qua E và I là giao điểm của BH với DF. Chứng minh \(BI\times BM=BH\times BE\)
Cho tam giác ABC(3 góc nhọn) có AD và BE là đường cao cắt nhau tại H.
a,Chứng minh tam giác AEH đồng dạng với tam giác BDH
b,Chứng minh AH.ED=AB.HE
c,Nếu AC=5cm AC=3cm tính tỉ số DB/DH
CH cắt AB tại F Chứng minh rằng HD/AD+HE/BE+HF/CF=1
P/s:chỉ cần làm c d thôi nhé
Bài 1 : Cho hình bình hành ABCD , điểm F nằm trên cạnh BC . Tia AF cắt BD và DC lần lượt ở E và G Chứng minh rằng :
a) Chứng minh tam giác BEF đồng dạng tam giác DEA
b) EG . EB = ED . EA
c) AE2 = EF . EG
Bài 2 : Cho tam giác nhọn ABC , các đường cao AD , BE , CF cắt nhau tại H .
a) Chứng minh tam giác AEB đồng dạng tam giác AFC và AF . AB = AE . AC
b) Chứng minh góc AEF = góc ABC
c) Cho AE = 3 cm , AB = 6 cm . Chứng minh rằng : Diện tích tam giác ABC bằng 4 lần diện tích tam giác AEF
Bài 3: Cho tam giác ABC vuông tại A , có AB = 3 cm , AC = 3 cm , AC = 4 cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E
a) Chứng minh tam giác ABC đồng dạng tamm giác DEC
b) Tính BC và BD
c) Tính AD
d) Tính diện tích tam giác ABC và diện tíc tứ giác ABDE