VV

Cho tam giác ABC có AB bằng 9cm, AC bằng 12 cm, BC bằng 15 cm Khẻ đường cao AD
a/ chứng minh: tam giác ADB đồng dạng với tam giác CAB
b/ Vẽ đường phân giác BE \((\)E thuộc AC\()\)
Tính EA,EC
c/ Chứng minh AD\(^2\) \(=\) BD. DC
d/ BE cắt AD tại I tính ID

DL
6 tháng 4 2021 lúc 15:47

a, ta có √(92+122)=15 nên theo định lý đảo của định lý pitago => ∠BAC=90 độ

Xét △ADB và △CAB có:

∠BAC=∠BDA(=90 độ), ∠ACB chung => △ADB ∼ △CAB (g.g) (1)

b, BE là đường phân giác của △ABC => \(\dfrac{AB}{AE}=\dfrac{BC}{EC}\)

Gọi AE= x (cm) => EC=12-x (cm)

Ta có: \(\dfrac{9}{x}=\dfrac{15}{12-x}\)=> 108-9x=15x =>108=24x => x=4,5 

Vậy EA=4,5 cm, EC=12-4,5=7,5 cm

c, Xét △CAB và △CDA có:

∠BCD chung, ∠ADC=∠BAC(=90 độ) => △CAB ∼ △CDA (g.g) (2)

Từ (1),(2) => △ADB ∼ △CDA (T/c bắc cầu)

=> \(\dfrac{AD}{CD}=\dfrac{DB}{AD}\) => AD2=BD.DC

d, SABC=\(\dfrac{1}{2}.AB.AC\)=\(\dfrac{1}{2}AD.BC\)

=> AB.AC=AD.BC => AD = \(\dfrac{9.12}{15}\)=7,2 cm

Áp dụng định lí Pitago vào △ADC vuông tại D:

AC2=AD2+DC2 => DC=√[122-(7,2)2]=9,6 cm

=> BD=BC-DC=15-9,6=5,4 cm

BI là đường phân giác của △ABD => \(\dfrac{AB}{AI}=\dfrac{BD}{DI}\)

Gọi ID=y (cm) => AI=7,2-y (cm)

Ta có: \(\dfrac{9}{7,2-y}=\dfrac{5,4}{y}\)=> 9y=38,88-5,4y => 14,4y=38,88 => y = 2,7

Nên ID=2,7 cm

 

 

 

Bình luận (0)
DL
6 tháng 4 2021 lúc 15:47

undefined

Bình luận (1)
DL
6 tháng 4 2021 lúc 15:49

undefined

Đây mới đúng hình nè

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LA
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
DM
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết