\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=-1(loại) hoặc x=2(nhận)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
=>x-2=0 hoặc x+2=1
=>x=-1(loại) hoặc x=2(nhận)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
1, \(K=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
2, \(\sqrt{x-3}-2.\sqrt{x^2-3x}=0\)
3, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
4, \(x-5\sqrt{x}+4=0\)
a : \(\dfrac{3}{\sqrt{x}-5}+\dfrac{20-2\sqrt{x}}{x-25}\)với x ≥ 0 x ≠ 25
b : \(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-2}{x-9}\)với x ≥ 0 x ≠ 9
c : \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{5\sqrt{x}-2}{x-4}\)với x ≥ 0 x ≠ 4
d : \(\left(\dfrac{x-2}{x+2\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)với ≥ 0 x ≠ 1
(\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)-\(\dfrac{3\sqrt{x}+2}{x-4}\) ) : \(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\) ( với x ≥ 0; x ≠ 4)
RÚT GỌN Ạ
( \(\dfrac{\sqrt{x}}{\sqrt{x}-2}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\) - \(\dfrac{3\sqrt{x}+2}{x-4}\) ) : \(\dfrac{\sqrt{x}-2}{x-4}\) ( với x ≥ 0; x ≠ 4)
RÚT GỌN Ạ
\(A=\dfrac{x\sqrt{2}}{2\sqrt{x}+x\sqrt{2}}+\dfrac{\sqrt{2x}-2}{x-2}\)
Với x > 0 ,x # 2
\(M=\left(\dfrac{a}{a-2\sqrt{a}}+\dfrac{a}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}+1}{a-4\sqrt{a}+4}\)
Với a > 0 ,a # 4
Rút gọn A,M :
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{x^2+4x+4}}{x-1}\)
b) \(x-2y-\sqrt{x^2-4xy+4y^2}\) ( x>= 0; y>=0)
c) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-4}\)
d) \(\dfrac{\sqrt{x^2+4x+4}}{x^2-2}\)
Điều kiện: \(2\le x\le4\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{2}+\sqrt{4-x}-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\sqrt{4x-8}-2\sqrt{2}+\sqrt{4-x}-\left(4-x\right)^2=0\)
\(\Leftrightarrow\frac{-4\left(4-x\right)}{\sqrt{4x-8}+2\sqrt{2}}+\sqrt{4-x}-\left(4-x\right)^2=0\)
\(\Leftrightarrow\sqrt{4-x}\left(\frac{-4\sqrt{4-x}}{\sqrt{4x-8}+2\sqrt{2}}+1-\sqrt{4-x}^3\right)=0\)
\(\Rightarrow\sqrt{4-x}=0\Rightarrow x=4\left(tmdk\right)\) hoặc \(\left(.......\right)=0\)vô nghiệm thì phải
Vậy nghiệm là x=4
Cho 0<x<2. Chứng minh rằng:
\(\dfrac{4-\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}+\sqrt{\left(2-x\right)^3}}\) + \(\dfrac{4+\sqrt{4-x^2}}{\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}}\) = \(\dfrac{\sqrt{2+x}}{x}\)