ĐKXĐ: \(x\ge\frac{5}{2}\)
Ta có:
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\\ \Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
(nhân cả hai vế với \(\sqrt{2}\))
\(\Leftrightarrow\sqrt{2x-5+2\cdot\sqrt{2x-5}\cdot1+1}+\sqrt{2x-5+2\cdot2\sqrt{2x-5}\cdot3+9}=14\\ \Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\\ \Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-5}+3\right|=14\\ \Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\\ \Leftrightarrow2\sqrt{2x-5}=10\\ \Leftrightarrow\sqrt{2x-5}=5\\ \Leftrightarrow2x-5=25\Leftrightarrow x=15\left(tm\right)\)
Vậy x=15
P/s: Chỗ GTTĐ | | phá được vì cả hai biểu thức đều > 0