this is ngứa tay?
this is ngứa tay?
. Chứng minh đẳng thức
a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}=\sqrt{2}-1\) b) \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)
rút gọn:
A=\(\dfrac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\left(a,b\ge0,a\ne b\right)\)
B=\(\left(\dfrac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)\cdot\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)\left(x,y\ge0,x\ne y\right)\)
Cho A = \(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
a) Rút gọn A
b) Tính A với a = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
rút gọn
a. A=\(\frac{1+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{1-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
b. B=\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
Rút gọn:
a) \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\left(x\ge0,x\ne1\right)\)
b) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
c) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
ba số dương a,b,c thỏa mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và\(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).chứng minh đẳng thức
\(\dfrac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\dfrac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
1. Cho A = \(\left(\dfrac{\sqrt{a}}{2\sqrt{a}}-\dfrac{1}{2\sqrt{a}}\right)\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a) Rút gọn A.
b) Tìm a để A = 4; A\(>-6\).
c) Tính A khi \(a^2-3=0\).
2. Cho B = \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\).
a) Rút gọn B.
b) Tính B khi a = \(\dfrac{\sqrt{6}}{2+\sqrt{6}}\).
c) Tìm a để \(\sqrt{B}>B\)
Rút gọn:
a) \(B=\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\left(a\ge0,a\ne2,a\ne4\right)\)
b) \(C=\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}+\frac{x+1}{\sqrt{x}}\left(x>0,x\ne1\right)\)
Rút gọn biểu thức:
a) \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right).\left(\sqrt{10}-\sqrt{2}\right)\)
b) \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right).\left(1-\frac{2}{a+1}\right)^2\) với \(a>0,a\ne1\)