\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\\ =0\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\\ =0\)
1) Rút gọn:
a) A = \(\sqrt{5-2\sqrt{3-\sqrt{3}}}-\sqrt{3+\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b) B = \(\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}\)
c) C = \(\dfrac{\sqrt{21+3\sqrt{5}}+\sqrt{21-3\sqrt{5}}}{\sqrt{21}+6\sqrt{11}}+\sqrt{11-6\sqrt{2}}\)
d) D = \(\left(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\right).\sqrt{\dfrac{2+2\sqrt{5}}{2+\sqrt{5}}}\)
e) E = \(\dfrac{\left(27+10\sqrt{2}\right)\sqrt{27-10\sqrt{2}}-\left(27-10\sqrt{2}\right)\sqrt{27+10\sqrt{2}}}{\left(\sqrt{\sqrt{13}-3}+\sqrt{\sqrt{13}+3}\right):\sqrt{\sqrt{13}+2}}\)
rút gọn
A=\(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
B=\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
C=\(\left(\sqrt{7}-\sqrt{10}\right)^2+\sqrt{280}\)
D=\(\dfrac{\sqrt{99}}{\sqrt{11}}+\sqrt{7}\cdot\sqrt{63}-\sqrt{\sqrt{81}}\)
E=\(\sqrt{27}\left(s-\sqrt{5}\right)^2\cdot\left(3\sqrt{48}\right)\)
giải chi tiết ra giúp mik nha,cảm ơn nhiều
(\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)):\(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
\(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x+\sqrt{xy}+y}-2\sqrt{y}\)
\(\left(1-\dfrac{4\sqrt{x}}{x-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\) ĐKXĐ: x>0 ; x≠1 ; x≠4
\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\right).\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{4}{x-4}\right)\) ĐKXĐ: x>0 và x≠4
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6-1}\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
1. \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{8}\)
2. \(\dfrac{\sqrt{3-2\sqrt{3}}}{\sqrt{17-12\sqrt{2}}}-\dfrac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
3.\(\sqrt{7+2\sqrt{6}}-\sqrt{\left(\sqrt{6}-1\right)^2}\)
4\(\sqrt{5-2\sqrt{6}}-\sqrt{5+\sqrt{24}}\)
5.\(\sqrt{4\sqrt{5+\sqrt{3+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}}\)
6.\(\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
Rút gọn biểu thức :
a,\(\frac{2+\sqrt{3}}{2-\sqrt{3}};\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\)
b,\(\frac{\sqrt{3}-1}{\sqrt{3}+1}\)
c,\(\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
d,\(\frac{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}}\)
Rút gọn biểu thức
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
Rút gọn:
a. \(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
b. \(\sqrt{5+2\sqrt{14\sqrt{5}-26}}-\sqrt{4\sqrt{5}-1+\sqrt{80+8\sqrt{5}}}\)
c. \(\dfrac{3+\sqrt{5}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\dfrac{3-\sqrt{5}}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Thu gọn:
a. \(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
b. \(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c. \(\dfrac{4+\sqrt{7}}{\sqrt{14}+\sqrt{4+\sqrt{7}}}-\dfrac{4-\sqrt{7}}{\sqrt{14}+\sqrt{4-\sqrt{7}}}\)
rút gọn
a) \(\sqrt{8+\sqrt{55}}-\sqrt{8-\sqrt{55}}-\sqrt{125}\)
b) \(\left(\sqrt{7-3\sqrt{5}}\right)\left(7+3\sqrt{5}\right)\left(3\sqrt{2}+\sqrt{10}\right)\)
c) \(\left(\sqrt{14}-\sqrt{10}\right)\left(6-\sqrt{35}\right)\left(\sqrt{6+\sqrt{35}}\right)\)