\(201^{60}=\left(201^4\right)^{15}=1944810000^{15}\)
\(398^{45}=\left(398^3\right)^{15}=63044792^{15}\)
Do \(1944810000>63044792\)
\(\Rightarrow1944810000^{15}>63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Ta có:
\(201^{60}>200^{60};398^{45}< 400^{45}\)
\(200^{60}=\left(2.100\right)^{60}=2^{60}.100^{60}=2^{60}.\left(10^2\right)^{60}\)
\(=2^{60}.10^{120}=2^{60}.10^{30}.10^{90}\)
\(400^{45}=\left(2.100\right)^{45}=2^{45}.100^{45}=2^{45}.\left(10^2\right)^{45}\)
\(=2^{45}.10^{90}\)
Mà \(2^{60}.10^{30}.10^{90}>2^{45}.10^{90}\)
\(\Rightarrow200^{60}>400^{45}\)
\(\Rightarrow201^{60}>200^{60}>400^{45}>398^{45}\)
\(\Rightarrow201^{60}>398^{45}\)
`#3107`
\(201^{60}\text{ và }398^{45}\)
Ta có:
\(201^{60}=\left(201\right)^{15\cdot4}=\left(201^4\right)^{15}=1632240801^{15}\)
\(398^{45}=\left(398\right)^{15\cdot3}=\left(398^3\right)^{15}=63044792^{15}\)
Vì `63044792 < 1632240801 \Rightarrow`\(1632240801^{15}< 63044792^{15}\)
\(\Rightarrow201^{60}>398^{45}\)
Vậy, \(201^{60}>398^{45}.\)