\(C=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(C=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Rút gọn biểu thức:
C=\(\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right)\div\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)vớix\ge0,x\ne1\)
D=\(\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\div\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)
Lm nhanh giúp mk nhé!
Rút gọn biểu thức:
E=\(\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1}\right)\times\dfrac{x-1}{2x+\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}vớix\ge0,x\ne1\)
M=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right)\div\left(\dfrac{1}{\sqrt{a}+1}-\dfrac{2}{a-1}\right)vớia\ge0,a\ne1\)
Lm nhanh giúp mk nhé! Thank!
cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{X}-1}-\dfrac{1}{\sqrt{X}}\right):\left(\dfrac{\sqrt{X}+1}{\sqrt{X}-2}-\dfrac{\sqrt{X}+2}{\sqrt{X-1}}\right)\)
a rút gọn Q
b tìm x để Q>0
rút gọn biểu thức
a) A=\(\dfrac{\sqrt{x}-3}{\sqrt{x-2}}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}vớix\ge0,x\ne4,x\ne1\)
b)\(\left(\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right)\div\dfrac{\sqrt{x}-1}{2}vớix>0,x\ne1\)
Rút gọn:
\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)
Giải::
ĐK: x khác +- 1
\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)
\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)
rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.
Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.
NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!
cho biểu thức p=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a rút gọn p
b chứng minh rằng p>1
cho biểu thức P =\(\left(\dfrac{\sqrt{x}}{\sqrt{x-1}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\)với 0<x≠1.
a) Rút gọn P.
b)Tìm x để P >2
cho biểu thức a=\(\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)
a rút gọn a
b tìm x để a=7
c tính giá trị của a khi x=2(2+\(\sqrt{3}\))
d tìm x để a<1
cho biểu thức P= \(\left(\dfrac{\sqrt{x}+1}{x-2\sqrt{x}}-\dfrac{1}{\sqrt{x}-2}\right)\times\left(x-3\sqrt{x}+2\right)\)với x>0 và x≠4.
a) Rút gọn P,
b)Tìm x để P< \(\dfrac{1}{2}\)
c, Tìm gt nguyên của x để P có gt nguyên
cho biểu thức P =\(\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\times\dfrac{4\sqrt{x}}{3}\) với x ≥ 0
a, Rút gọn P,
b, Tìm x để P=\(\dfrac{8}{9}\),
c, Tìm Max và Min của P