Ôn tập chương 1: Căn bậc hai. Căn bậc ba

PT

Rút gọn các biểu thức sau

a)

\(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

b) \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

PA
3 tháng 8 2017 lúc 17:01

\(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\times\sqrt{2}\left(\sqrt{5}-1\right)\)

\(=2\sqrt{3+\sqrt{5}}\times\sqrt{2}\left(\sqrt{5}-\sqrt{1}\right)\)

\(=2\sqrt{6+2\sqrt{5}}\times\left(\sqrt{5}-\sqrt{1}\right)\)

\(=2\sqrt{\left(\sqrt{5}+1\right)^2}\times\left(\sqrt{5}-\sqrt{1}\right)\)

\(=2\left(\sqrt{5}+1\right)\times\left(\sqrt{5}-\sqrt{1}\right)\)

\(=2\left(5-1\right)\)

= 8

~ ~ ~

\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}\)

\(=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}\)

\(=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}\)

\(=\left(2\sqrt{2}-\sqrt{5}\right)-\left(3\sqrt{5}+2\sqrt{2}\right)\)

\(=-4\sqrt{5}\)

Bình luận (0)
TK
3 tháng 8 2017 lúc 17:11

a. \(\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left[2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right]\left(\sqrt{10}-\sqrt{2}\right)=\left(2\sqrt{4+\sqrt{5}-1}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left(2\sqrt{3+\sqrt{5}}\right)\left(\sqrt{10}-\sqrt{2}\right)=\left[2\sqrt{\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)^2}\right]\left(\sqrt{10}-\sqrt{2}\right)=\left[2\left(\sqrt{\dfrac{5}{2}}+\sqrt{\dfrac{1}{2}}\right)\right]\left(\sqrt{10}-\sqrt{2}\right)=\left(\sqrt{10}+\sqrt{2}\right)\left(\sqrt{10}-\sqrt{2}\right)=10-2=8\)

b. \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{90}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}+2\sqrt{2}\right)^2}=2\sqrt{2}-\sqrt{5}-3\sqrt{5}-2\sqrt{2}=-4\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
NY
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CW
Xem chi tiết
SV
Xem chi tiết