\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}=\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}=\sqrt{2}\)
\(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
\(=\dfrac{\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{-1}\)
\(=-\left(2+\sqrt{2}\right)\left(1-\sqrt{2}\right)\)
\(=-\left(2-2\sqrt{2}+\sqrt{2}-2\right)\)
\(=-\left(-\sqrt{2}\right)\)
\(=\sqrt{2}\)