Bài 3: Liên hệ giữa phép nhân và phép khai phương

TT

rút gọn

A=\(\dfrac{u-v}{\sqrt{u}+\sqrt{v}}-\dfrac{\sqrt{u^3}+\sqrt{v^3}}{u-v}\) với u\(\ge\)0,v\(\ge\)0 và u\(\ne\)v

HS
16 tháng 8 2018 lúc 14:38

\(A=\dfrac{u-v}{\sqrt{u}+\sqrt{v}}-\dfrac{\sqrt{u^3}+\sqrt{v^3}}{u-v}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u\sqrt{u}+v\sqrt{v}}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\left(\sqrt{u}-\sqrt{v}\right)\left(\sqrt{u}+\sqrt{v}\right)}\)

\(=\sqrt{u}-\sqrt{v}-\dfrac{u-\sqrt{uv}+v}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{\left(\sqrt{u}-\sqrt{v}\right)\sqrt{u}-\left(\sqrt{u}-\sqrt[]{v}\right)\sqrt{v}-\left(u-\sqrt{uv}+v\right)}{\sqrt{u}-\sqrt{v}}\)

\(=\dfrac{u-\sqrt{uv}-\sqrt{uv}+v-u+\sqrt{uv}-v}{\sqrt{u}-\sqrt{v}}\)

\(\Leftrightarrow\)\(-\dfrac{\sqrt{uv}}{\sqrt{u}-\sqrt{v}}\)

Bình luận (1)
NH
16 tháng 8 2018 lúc 16:11

để cả căn hơi phức tạp nhỉ? nếu tinh ý 1 chút thì sẽ đơn giản thôi :3

chú ý nhé ! nếu ta đăt như sau \(\sqrt{u}=a;\sqrt{v}=b\)

đến đấy thì dễ nhỉ<3;

\(A=\dfrac{a^2-b^2}{a+b}-\dfrac{a^3+b^3}{a^2-b^2}\)

xem nào ~~ để ý xem nó có phải hằng đẳng thức quen thuộc k nhỉ, thôi k quan tâm cứ trâu bò vào xem ra cái j k đã bạn ạ

\(A=\dfrac{\left(a+b\right)\left(a-b\right)}{a+b}-\dfrac{\left(a+b\right)\left(a^2-ab+b^2\right)}{\left(a-b\right)\left(a+b\right)}\)

\(A=a-b-\dfrac{a^2-ab+b^2}{a-b}\) có thể bạn nghĩ đến đây là khó, đùng ngại ta hãy cứ quy đồng chúng

\(A=\dfrac{\left(a-b\right)^2-a^2+ab-b^2}{a-b}=\dfrac{-ab}{a-b}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
LC
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết
IM
Xem chi tiết
LM
Xem chi tiết
TD
Xem chi tiết
HA
Xem chi tiết