Bài 1: Căn bậc hai

NC

\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

a) Rút gọn P

b) Cho \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=6\). Tìm GTLN của P

PA
19 tháng 7 2017 lúc 15:28

\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right)\)

\(\div\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}{\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}\right]\)

\(\div\left[\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)-\left(\sqrt{xy}+1\right)\left(\sqrt{x}+\sqrt{xy}\right)-\left(\sqrt{xy}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{1-xy}\times\dfrac{xy-1}{-2\sqrt{xy}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{xy}}{xy}\)

Áp dụng BĐT AM - GM, ta có:

\(6=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge2\times\sqrt{\dfrac{1}{\sqrt{xy}}}\)

\(\Leftrightarrow\sqrt{xy}\ge\dfrac{1}{9}\)

Ta có:

\(M=\dfrac{\sqrt{xy}}{xy}=\dfrac{1}{\sqrt{xy}}\le\dfrac{1}{\dfrac{1}{9}}=9\)

Max = 9 <=> x = y = \(\dfrac{1}{9}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
LM
Xem chi tiết
NL
Xem chi tiết
TV
Xem chi tiết
NT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
MH
Xem chi tiết