ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)
\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)
\(\Leftrightarrow xy\le1\)
mà \(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)
\(\Leftrightarrow0\le x+y\le2\).
\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)
Áp dụng bất đẳng thức cauchy dạng phân thức:
\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)
vì \(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))
\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))
Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)
từ (*) và (**) ta có \(VT\ge1+1=2\)
đẳng thức xảy ra khi x=y=1