Bài 1: Căn bậc hai

MH

cho x,y dương thỏa \(\left(x+y-1\right)^2=xy\)

tìm MIN \(\dfrac{1}{xy}+\dfrac{1}{x^2+y^2}+\dfrac{\sqrt{xy}}{x+y}\)

H24
3 tháng 5 2017 lúc 13:17

ta có : \(\left(x+y-1\right)^2=xy\Leftrightarrow x^2+y^2+xy-2x-2y+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+xy-1=0\)

\(0=\left(x-1\right)^2+\left(y-1\right)^2+xy-1\ge xy-1\)

\(\Leftrightarrow xy\le1\)

\(xy=\left(x+y-1\right)^2\le1\Leftrightarrow-1\le x+y-1\le1\)

\(\Leftrightarrow0\le x+y\le2\).

\(VT=\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

Áp dụng bất đẳng thức cauchy dạng phân thức:

\(\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{4}=1\)(*)

\(xy\le1\)nên \(\sqrt{xy}\ge xy\)( đúng vì nó tương đương \(\sqrt{xy}\left(1-\sqrt{xy}\right)\ge0\))

\(\Rightarrow\dfrac{1}{2xy}+\dfrac{\sqrt{xy}}{x+y}\ge\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\)( vì \(x+y\le2\))

Áp dụng bất đẳng thức cauchy: \(\dfrac{1}{2\sqrt{xy}}+\dfrac{\sqrt{xy}}{2}\ge2\sqrt{\dfrac{1}{2\sqrt{xy}}.\dfrac{\sqrt{xy}}{2}}=1\)(**)

từ (*) và (**) ta có \(VT\ge1+1=2\)

đẳng thức xảy ra khi x=y=1

Bình luận (4)

Các câu hỏi tương tự
MH
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
TV
Xem chi tiết
MH
Xem chi tiết
HP
Xem chi tiết
NC
Xem chi tiết
HP
Xem chi tiết