TN

phân tích đa thức thành nhân tử 

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-b^2\right)\)

TL
7 tháng 8 2016 lúc 21:59

\(\left(a+b\right)\left(a^2-b^2\right)+\left(b+c\right)\left(b^2-c^2\right)+\left(c+a\right)\left(c^2-a^2\right)\)

\(=a^3-ab^2+a^2b-b^3+b^3-bc^2+b^2c-c^3+c^3-a^2c+ac^2-a^3\)

\(=-ab^2+a^2b-bc^2+b^2c-a^2c+ac^2\)

\(=\left(a^2b-ab^2\right)+\left(ac^2-bc^2\right)-\left(a^2c-b^2c\right)\)

\(=ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(ab+c^2-ac-bc\right)\)

\(=\left(a-b\right)\left[\left(ab-ac\right)+\left(c^2-bc\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)+c\left(c-b\right)\right]\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Bình luận (0)
TN
7 tháng 8 2016 lúc 21:58

chỗ cuối phải là c^2-a^2 nha mọi người

 

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
PA
Xem chi tiết
BM
Xem chi tiết
NV
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
SG
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết