ĐK : \(x\ge0;x\ne1\)
P = \(\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
= \(\dfrac{x-\sqrt{x}+1-x-1+2\sqrt{x}}{\sqrt{x}-1}\)
= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
P < 1 \(\Leftrightarrow\dfrac{\sqrt{x}}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}-1}< 0\)
Mà 1 > 0 \(\Rightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Vậy để P < 1 thì \(0\le x< 1\)