DH

\(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)                   \(\left(x>0;x\ne1\right)\)

Tìm x để \(\dfrac{7}{P}\)  nguyên

NL
13 tháng 8 2021 lúc 0:47

Rút gọn biểu thức P ta được \(P=\dfrac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)

\(\Rightarrow\dfrac{7}{P}=\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\)

Ta có \(\left\{{}\begin{matrix}\sqrt{x}>0\\x+\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{7}{P}>0\)

Lại có: \(\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=\dfrac{4\left(x+\sqrt{x}+1\right)-4x+3\sqrt{x}-4}{2\left(x+\sqrt{x}+1\right)}=2-\dfrac{4x+3\sqrt{x}+4}{2\left(x+\sqrt{x}+1\right)}< 2\)

\(\Rightarrow0< \dfrac{7}{P}< 2\)

Mà \(\dfrac{7}{P}\) nguyên \(\Rightarrow\dfrac{7}{P}=1\)

\(\Rightarrow\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=1\Rightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)

\(\Rightarrow2x-5\sqrt{x}+2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
ST
Xem chi tiết
GC
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
NL
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết