NM

Cho biểu thức:
 \(P=\left(1+\dfrac{4}{\sqrt{x}-1}+\dfrac{1}{x-1}\right):\left(\dfrac{x+2\sqrt{x}}{x-1}\right)\) Với \(x>0;x\ne1\)
a, Rút gọn biểu thức.
b, Tìm \(x\in Z\) để P nhận giá trị nguyên.

LL
18 tháng 9 2021 lúc 15:09

a) \(P=\dfrac{x-1+4\left(\sqrt{x}+1\right)+1}{x-1}.\dfrac{x-1}{x+2\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}+4}{x+2\sqrt{x}}=\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}}\)

b) \(P=\dfrac{\sqrt{x}+2}{\sqrt{x}}=1+\dfrac{2}{\sqrt{x}}\in Z\)

Do \(\sqrt{x}>0\)

\(\Rightarrow\sqrt{x}\inƯ\left(2\right)=\left\{1;2\right\}\)

\(\Rightarrow x\in\left\{1;4\right\}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết
YT
Xem chi tiết
FC
Xem chi tiết
GC
Xem chi tiết
DN
Xem chi tiết