Để P nguyên thì \(\sqrt{x}+2=3\)
hay x=1
Để P nguyên thì \(\sqrt{x}+2=3\)
hay x=1
M = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)
a) Rút gọn M
b) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Tìm x để biểu thức sau có nghĩa:
c) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
d) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
e) \(\dfrac{1}{\sqrt{x^2-8x+15}}\)
f) \(\dfrac{1}{\sqrt{3x^2-7x+20}}\)
Tìm x để các căn thức sau có nghĩa
a) \(\sqrt{-x-8}\)
b) \(\sqrt{\dfrac{1}{x^2-2x+1}}\)
c) \(\dfrac{\sqrt{x-2}}{5-x}\)
d) \(\sqrt{x^2+3}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
\(\dfrac{1}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\)tìm x để căn thức có nghĩa.( cho mình xin lời giải chi tiết ạ)
\(K=\left[\dfrac{x+3\sqrt{x}+2}{x+\sqrt{x}-2}-\dfrac{x+\sqrt{x}}{x-1}\right]:\left[\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right]\)
a,Rút gọn K
b,Tính K khi x=\(24+\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
c,Tìm x để \(\dfrac{1}{K}-\dfrac{\sqrt{x}+1}{8}\)≥1
Bài 1: Cho A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)với x≥0; y≥0; x≠y
a) Rút gọn A
b) Chứng minh A≥0
Bài 2:Cho A= \(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right).\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)
với x>0; x≠1
a) Rút gọn A
b)Tìm x để A=6
\(\dfrac{2}{\sqrt{x+3\sqrt{x-1}}}\)
tìm x để biểu thức có nghĩa
Cho H = \(\dfrac{1}{\sqrt{x-1}-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}+\sqrt{x}}+\dfrac{\sqrt{x}^3-x}{\sqrt{x}-1}\)
a) ĐKXĐ, Rút gọn
b)Tính H khi x =\(\dfrac{53}{9-2\sqrt{7}}\)
c) Tìm x để H=16
d) Tìm x để H>1