Ẩn danh

nhờ mọi người giúp em với loading...

NT

t: \(\dfrac{sinx}{sinx+cosx}-\dfrac{cosx}{cosx-sinx}\)

\(=\dfrac{sinx}{sinx+cosx}+\dfrac{cosx}{sinx-cosx}\)

\(=\dfrac{sinx\left(sinx-cosx\right)+cosx\left(sinx+cosx\right)}{sin^2x-cos^2x}\)

\(=\dfrac{sin^2x+cos^2x}{sin^2x-cos^2x}=\dfrac{\dfrac{sin^2x}{sin^2x}+\dfrac{cos^2x}{sin^2x}}{\dfrac{sin^2x}{sin^2x}-\dfrac{cos^2x}{sin^2x}}=\dfrac{1+cot^2x}{1-cot^2x}\)

s: \(cos^3x\cdot\left(tan^3x+tan^2x+tanx+1\right)\)

\(=cos^3x\left[tan^2x\left(tanx+1\right)+\left(tanx+1\right)\right]\)

\(=cos^3x\left(tan^2x+1\right)\left(tanx+1\right)\)

\(=\dfrac{cos^3x}{cos^2x}\cdot\left(tanx+1\right)=cosx\cdot\left(tanx+1\right)\)

\(=cosx\cdot\left(\dfrac{sinx}{cosx}+1\right)=cosx\cdot\dfrac{sinx+cosx}{cosx}=sinx+cosx\)

=>\(\dfrac{sinx+cosx}{cos^3x}=tan^3x+tan^2x+tanx+1\)

q: \(\dfrac{1+tan^2x}{1-tan^2x}\)

\(=\dfrac{1+\left(\dfrac{sinx}{cosx}\right)^2}{1-\left(\dfrac{sinx}{cosx}\right)^2}=\dfrac{cos^2x+sin^2x}{cos^2x}:\dfrac{cos^2x-sin^2x}{cos^2x}\)

\(=\dfrac{1}{cos^2x}\cdot\dfrac{cos^2x}{cos^2x-sin^2x}=\dfrac{1}{cos^2x-sin^2x}\)

r: \(\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)\)

\(=sin^2x-\left(cosx-1\right)^2\)

\(=sin^2x-\left(cos^2x-2\cdot cosx+1\right)\)

\(=sin^2x-cos^2x+2\cdot cosx-1\)

\(=sin^2x-cos^2x+2\cdot cosx-sin^2x-cos^2x\)

\(=2\cdot cosx-2\cdot cos^2x=2\cdot cosx\left(1-cosx\right)\)

=>\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2\cdot cosx}{sinx-cosx+1}\)

m: \(\dfrac{1+2\cdot sinx\cdot cosx}{sin^2x-cos^2x}\)

\(=\dfrac{sin^2x+cos^2x+2\cdot sinx\cdot cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)

\(=\dfrac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\dfrac{sinx+cosx}{sinx-cosx}\)

\(=\dfrac{\dfrac{sinx}{cosx}+\dfrac{cosx}{cosx}}{\dfrac{sinx}{cosx}-\dfrac{cosx}{cosx}}=\dfrac{tanx+1}{tanx-1}\)

n: \(\left(tan^2x-cot^2x\right)\cdot\left(sin^2x\cdot cos^2x\right)\)

\(=\left(\dfrac{sin^2x}{cos^2x}-\dfrac{cos^2x}{sin^2x}\right)\cdot\left(sin^2x\cdot cos^2x\right)\)

\(=\dfrac{sin^4x-cos^4x}{cos^2x\cdot sin^2x}\cdot sin^2x\cdot cos^2x=sin^4x-cos^4x\)

\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)=sin^2x-cos^2x=1-2\cdot cos^2x\)

=>\(\dfrac{1-2\cdot cos^2x}{sin^2x\cdot cos^2x}=tan^2x-cot^2x\)

o: \(\dfrac{cosx}{1+sinx}-\dfrac{1}{cosx}=\dfrac{cos^2x-\left(1+sinx\right)}{cosx\cdot\left(1+sinx\right)}\)

\(=\dfrac{1-sin^2x-1-sinx}{cosx\left(1+sinx\right)}=\dfrac{-sinx\cdot\left(sinx+1\right)}{cosx\left(1+sinx\right)}\)

\(=-\dfrac{sinx}{cosx}=-tanx\)

=>\(\dfrac{cosx}{1+sinx}+tanx=\dfrac{1}{cosx}\)

p: \(\dfrac{tan^2x-tan^2y}{tan^2x\cdot tan^2y}=\dfrac{\left(\dfrac{sinx}{cosx}\right)^2-\left(\dfrac{siny}{cosy}\right)^2}{\dfrac{sin^2x}{cos^2x}\cdot\dfrac{sin^2y}{cos^2y}}\)

\(=\dfrac{sin^2x\cdot cos^2y-sin^2y\cdot cos^2x}{cos^2x\cdot cos^2y}:\dfrac{sin^2x\cdot sin^2y}{cos^2\cdot cos^2y}\)

\(=\dfrac{sin^2x\cdot cos^2y-sin^2y\cdot cos^2x}{sin^2x\cdot sin^2y}\)

\(=\dfrac{sin^2x\left(1-sin^2y\right)-sin^2y\left(1-sin^2x\right)}{sin^2x\cdot sin^2y}=\dfrac{sin^2x-sin^2x\cdot sin^2y-sin^2y+sin^2x\cdot sin^2y}{sin^2x\cdot sin^2y}=\dfrac{sin^2x-sin^2y}{sin^2x\cdot sin^2y}\)

 

Bình luận (1)

Các câu hỏi tương tự
NM
Xem chi tiết
NM
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết