H24

undefinedmọi người giúp em với em cảm ơn nhiều lắmmmmm

NL
8 tháng 1 2022 lúc 20:36

\(\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\Rightarrow\dfrac{ab+bc+ca}{abc}\ge\dfrac{3\left(a+b+c\right)}{ab+bc+ca}\)

\(\Rightarrow a+b+c\ge\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{ab+bc+ca}{abc}\right)\ge\dfrac{3}{16}\left(\dfrac{a+b+c}{ab+bc+ca}\right)\)

\(\Rightarrow ab+bc+ca\ge\dfrac{3}{16}\)

Ta có:

\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\dfrac{a+c}{2}}+\sqrt{\dfrac{a+c}{2}}\ge3\sqrt[3]{\dfrac{\left(a+b\right)\left(a+c\right)}{2}}\)

\(\Rightarrow\left(\dfrac{1}{a+b+\sqrt{2\left(a+c\right)}}\right)^3\le\dfrac{2}{27\left(a+b\right)\left(a+c\right)}\)

Tương tự và cộng lại:

\(P\le\dfrac{2}{27}\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\)

\(P\le\dfrac{4}{27}.\dfrac{a+b+c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Mặt khác:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)-\sqrt[3]{abc}.\sqrt[3]{ab.bc.ca}\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\dfrac{1}{3}.\left(a+b+c\right).\dfrac{1}{3}\left(ab+bc+ca\right)\)

\(=\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Rightarrow P\le\dfrac{4}{27}.\dfrac{a+b+c}{\dfrac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)}=\dfrac{1}{6\left(ab+bc+ca\right)}\le\dfrac{1}{6.\dfrac{3}{16}}=\dfrac{8}{9}\)

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
HL
Xem chi tiết
MT
Xem chi tiết
SM
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết