Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{DB}{2\cdot DB}=\dfrac{1}{2}\)
nên AC=2AB
Xét ΔABC có AD là phân giác
nên \(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{DB}{2\cdot DB}=\dfrac{1}{2}\)
nên AC=2AB
Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b)Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Bài 1: Cho tam giác ABC lấy M thuộc cạnh AB sao cho MA=MB. Qua M kẻ đường thẳng song song với BC cắt AC tại N .
a) Chứng minh: N là trung điểm của AC.
b) Chứng minh: MN là đường trung bình của tam giác ABC .
Bài 2: Cho tam giác ABC vuông tại A, AB=5cm;BC=13cm.
a) Tính AC
b) Qua trung điểm M của AB , vẽ một đường thẳng song song với AC cắt BC tại N . Tính độ dài MN ?
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 2: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 3: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Bài 1: Cho tứ giác ABCD. Gọi E, F, I là trung điểm của AD, BC, AC. Chứng minh rằng:
a) EI // CD; IF // AB.
b) EF ≤ (AB+CD)/2
Bài 4: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 5: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN
Bài 4:Cho hình thang ABCD có góc A= góc D= 90 độ, AB= AD= 2cm; DC= 4cm và BH vuông góc CD tại H
a)Chứng minh rằng: tam giác ABD= tam giác HDB
b)Chứng minh rằng: tam giác BHC vuông cân tại H
Cho tam giác ABC, trung tuyến AM, trên cạnh ac lấy điểm D, E sao cho AD = BE=EC . Gọi I là giao điểm của AM và DB. Chứng minh IA = IM
giải giúp mình bài này nhé:
cho tứ giác ABCD không là hình thang và có AB=CD, AC cắt BD tại O. gọi M và N ần lượt là trung điểm của AD và BC. Đoạn thẳng MN lần lượt cắt các đoạn thẳng AC và BD tại I và K. Chứng minh tam giác OIK là tam giác cân
Cho tam giác ABC có trung tuyến AM. Trên cạnh AC lấy hai điểm D và E sao cho AD=DE=EC. Gọi I là giao điểm của AM và BD
a. Chứng minh ME // ID
b. Chứng minh AI=IM
c. Tính DI, biết BI=9cm
Giúp mình với <3
Cho tam giác ABC cân tại A có M, N lần lượt là trung điểm của AB, BC. Qua N kẻ đường thẳng song song với AB và cắt AC tại K. a) Chứng minh NK = 1/2 AB b) Chứng minh tam giác MNK cân tại N