DH

Mọi người giúp gấp với ạ :((

Cho tam giác ABC. Tại mỗi đỉnh của tam giác đặt một con kiến. Chúng bò từ A đến B, từ B đến C, từ C đến A (chuyển động đều). CMR tại mọi thời điểm, tam giác tạo bởi 3 con kiến có trọng tâm không đổi.

NL
6 tháng 9 2021 lúc 23:05

Gọi vận tốc của các con kiến trên 3 cạnh lần lượt là \(v_{AB};v_{BC};v_{AC}\)

Đặt \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{AC}}{AC}=k\Rightarrow\left\{{}\begin{matrix}v_{AB}=k.AB\\v_{BC}=k.BC\\v_{AC}=k.AC\end{matrix}\right.\)

Tại 1 thời điểm t bất kì, giả sử con kiến trên cạnh AB đi tới điểm M, con kiến trên cạnh BC đi tới điểm N, con kiến trên cạnh CA đi tới điểm P

\(\Rightarrow\left\{{}\begin{matrix}AM=t.v_{AB}=t.k.AB\\BN=t.v_{BC}=t.k.BC\\CP=t.v_{CA}=t.k.CA\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=t.k.\overrightarrow{AB}\\\overrightarrow{BN}=t.k.\overrightarrow{BC}\\\overrightarrow{CP}=t.k.\overrightarrow{CA}\end{matrix}\right.\)  (1)

Gọi G là trọng tâm tam giác ABC

Từ (1) ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=tk\left(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\right)=tk.\overrightarrow{0}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{BG}+\overrightarrow{GN}+\overrightarrow{CG}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\left(\overrightarrow{AG}+\overrightarrow{BG}+\overrightarrow{CG}\right)+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{0}+\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{GM}+\overrightarrow{GN}+\overrightarrow{GP}=\overrightarrow{0}\)

\(\Rightarrow G\) là trọng tâm tam giác MNP

\(\Rightarrow\) Tại mọi thời điểm thì tam giác tạo bởi 3 con kiến luôn có trọng tâm không đổi, là điểm trùng với trọng tâm của tam giác ABC

Bình luận (1)
NL
6 tháng 9 2021 lúc 18:25

Đề bài sai nhé em, bài toán chỉ đúng trong trường hợp duy nhất, đó là  khi vận tốc của các con kiến thỏa mãn \(\dfrac{v_{AB}}{AB}=\dfrac{v_{BC}}{BC}=\dfrac{v_{CA}}{CA}\) (nghĩa là vận tốc con kiến trên cạnh nào thì có độ lớn tỉ lệ với độ dài cạnh ấy). Chuyển động đều là chưa đủ.

Bình luận (2)

Các câu hỏi tương tự
HT
Xem chi tiết
JE
Xem chi tiết
NA
Xem chi tiết
PB
Xem chi tiết
DD
Xem chi tiết
MD
Xem chi tiết
H24
Xem chi tiết
TS
Xem chi tiết
TN
Xem chi tiết