DD

cho tam giác abc có b (-4,0) đường cao kẻ từ a : -4x+3y+2=0 và đường trung tuyến kẻ từ đỉnh ccos phương trình :4x+y+3=0

a)lập hương trình các cạnh của tam giác abc

b) tính diện tích tam giác 

giúp mình với ạ mình đang cần gấp lắm luôn ạ 

NL
8 tháng 4 2022 lúc 19:38

Do BC vuông góc đường cao AH kẻ từ A nên BC nhận (3;4) là 1 vtpt

Phương trình BC:

\(3\left(x+4\right)+4\left(y-0\right)=0\Leftrightarrow3x+4y+12=0\)

C là giao điểm BC và trung tuyến kẻ từ C nên tọa độ C là nghiệm:

\(\left\{{}\begin{matrix}4x+y+3=0\\3x+4y+12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\end{matrix}\right.\) \(\Rightarrow C\left(0;-3\right)\)

Gọi M là trung điểm AB \(\Rightarrow M\) thuộc trung tuyến kẻ từ C nên tọa độ M có dạng: \(M\left(m;-4m-3\right)\)

Áp dụng công thức trung điểm: \(\left\{{}\begin{matrix}x_A=2x_M-x_B=2m+4\\y_A=2y_M-y_B=-8m-6\end{matrix}\right.\)

Do A thuộc -4x+3y+2=0 nên:

\(-4\left(2m+4\right)+3\left(-8m-6\right)+2=0\Rightarrow m=-1\) \(\Rightarrow A\left(2;2\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow\) đường thẳng AB nhận (1;-3) là 1 vtpt

Phương trình AB:

\(1\left(x+4\right)-3\left(y-0\right)=0\Leftrightarrow x-3y+4=0\)

\(\overrightarrow{AC}=\left(-2;-5\right)\Rightarrow\) đường thẳng AC nhận (5;-2) là 1 vtpt

Phương trình AC:

\(5\left(x-2\right)-2\left(y-2\right)=0\Leftrightarrow5x-2y-6=0\)

Bình luận (0)
NL
8 tháng 4 2022 lúc 19:41

b.

Ta có: \(\overrightarrow{AB}=\left(-6;-2\right)\Rightarrow AB=\sqrt{\left(-6\right)^2+\left(-2\right)^2}=2\sqrt{10}\)

Gọi H là chân đường cao hạ từ C xuống AB

\(\Rightarrow CH=d\left(C;AB\right)=\dfrac{\left|0-\left(-3\right).3+4\right|}{\sqrt{1^2+\left(-3\right)^2}}=\dfrac{13\sqrt{10}}{10}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}CH.AB=13\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
JE
Xem chi tiết
LH
Xem chi tiết
KA
Xem chi tiết