Lời giải:
Đặt $\frac{3x-1}{4}=\frac{7y-4}{5}=t\Rightarrow x=\frac{4t+1}{3}; y=\frac{5t+4}{7}$
Khi đó:
$t=\frac{3x+7y-5}{3x}=\frac{4t+1+(5t+4)-5}{4t+1}$
$\Rightarrow t=\frac{9t}{4t+1}$
$\Rightarrow t(4t+1)=9t$
$\Rightarrow t(4t+1-9)=0$
$\Rightarrow t(4t-8)=0$
$\Rightarrow t=0$ hoặc $t=2$
Đến đây bạn thay vào tìm x,y thôi.