\(\sqrt{x+4}\cdot\sqrt{x-4}=\sqrt{\left(x+4\right)\left(x-4\right)}=\sqrt{x^2-16}\)
\(\left(\sqrt{x+4}\right)\cdot\left(\sqrt{x-4}\right)\)
\(=\sqrt{\left(x+4\right)\cdot\left(x-4\right)}\)
\(=\sqrt{x^2-4x+4x-16}\)
\(=\sqrt{x^2-16}\)
\(\sqrt{x+4}\cdot\sqrt{x-4}=\sqrt{\left(x+4\right)\left(x-4\right)}=\sqrt{x^2-16}\)
\(\left(\sqrt{x+4}\right)\cdot\left(\sqrt{x-4}\right)\)
\(=\sqrt{\left(x+4\right)\cdot\left(x-4\right)}\)
\(=\sqrt{x^2-4x+4x-16}\)
\(=\sqrt{x^2-16}\)
\(\dfrac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)\) (với \(x>1;x\ne2\))
Giải phương trình
\(\frac{3\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-\sqrt{5}\right)}+\frac{5\left(x-1\right)\left(x+\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Cho x, y, z là các số thực dương thỏa mãn: \(x+y+z+\sqrt{xyz}=4\). Tính giá trị biểu thức
\(P=\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-z\right)\left(4-x\right)}+\sqrt{z\left(4-x\right)\left(4-y\right)}-\sqrt{xyz}\)
Bài toán :
Giải phương trình :
\(\frac{3.\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-5\right)}+\frac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Tính giá trị của biểu thức P= \(\sqrt{x\left(4-y\right)\left(4-z\right)}+\sqrt{y\left(4-x\right)\left(4-z\right)}+\sqrt{z\left(4-y\right)\left(4-x\right)}-\sqrt{xyz}\)
Trong đó x,y,z là các số thực dương thỏa mãn: x+y+z= 4 - \(\sqrt{xyz}\)
\(\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\times\left(3\sqrt{\dfrac{2}{3}}-\sqrt{2}-\sqrt{6}\right)\times\left(-\sqrt{6}\right)\)
A=\(\left(\frac{\sqrt{x}-1}{x-4}-\frac{\sqrt{x+1}}{x+4\sqrt{x+4}}\right)\):\(\frac{x\sqrt{x}}{\left(4-x\right)^2}\)
B=\(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{x+9\sqrt{x}}{x-9}\right):\frac{x\sqrt{x}}{\left(4-x\right)^2}\)
rút gọn các biểu thức
Thu gọn
\(B=\left(\sqrt{x}-1\right)\left(\sqrt{x}+4\right)-\left(\sqrt{x}-3\right)^2+\left(2\sqrt{x}+1\right)^2\)
C = \(\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+\frac{x-4}{x-2}-\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}\)
\(\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)