\(....=\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4x+4}}\left(\dfrac{x-2}{x-1}\right)\)
\(=\dfrac{\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}}{\sqrt{\left(x-2\right)^2}}.\dfrac{x-2}{x-1}\)
\(=\dfrac{\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1}{\left|x-2\right|}.\dfrac{x-2}{x-1}\)
Kết hợp điều kiện, ta xét các khoảng sau
\(x>2\) thì
\(..=\dfrac{\sqrt{x-1}-1+\sqrt{x-1}+1}{x-2}.\dfrac{x-2}{x-1}\)
\(=\dfrac{2\sqrt{x-1}}{x-1}\)
\(1< x< 2\) thì
\(..=\dfrac{1-\sqrt{x-1}+\sqrt{x-1}+1}{2-x}.\dfrac{x-2}{x-1}\)
\(=\dfrac{-2}{x-1}\)
Vậy.....