MN

\(\left(\dfrac{1}{\sqrt{x}}-x\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
rút gọn

 
H9
16 tháng 8 2023 lúc 15:32

\(\left(\dfrac{1}{\sqrt{x}}-x\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{x\sqrt{x}}{\sqrt{x}}\right):\left[\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)

\(=\dfrac{1-x\sqrt{x}}{\sqrt{x}}:\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)

\(=\dfrac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}\)

\(=-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=-\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

Bình luận (1)
QM
16 tháng 8 2023 lúc 15:36

\(\left(\dfrac{1}{\sqrt{x}}-x\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)=\dfrac{1-x\sqrt{x}}{\sqrt{x}}:\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+\left(1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{1-x\sqrt{x}}{\sqrt{x}}.\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-\sqrt{x}}=\dfrac{\left(1-x\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{1-x\sqrt{x}}{\sqrt{x}}\)

Bình luận (0)

Các câu hỏi tương tự
NP
Xem chi tiết
PP
Xem chi tiết
PP
Xem chi tiết
HN
Xem chi tiết
NP
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
NP
Xem chi tiết
NP
Xem chi tiết