HT

\(\left\{{}\begin{matrix}x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\\\sqrt{x+2}+2\sqrt{y+11}=\sqrt{\left(4y-x+14\right)^3}\end{matrix}\right.\)

NL
3 tháng 3 2022 lúc 21:43

ĐKXĐ: \(x\ge-2;y\ge-11\)

\(x\left(x+21\right)+y\left(x-33\right)=2\left(y^2+50\right)\)

\(\Leftrightarrow x^2+\left(y+21\right)x-2y^2-33y-100=0\)

\(\Delta=\left(y+21\right)^2+4\left(2y^2+33y+100\right)=\left(3y+29\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-y-21+3y+29}{2}=y+4\\x=\dfrac{-y-21-3y-29}{2}=-2y-25\end{matrix}\right.\)

TH1: \(x=-2y-25\Rightarrow x+2y=-25\)

Mà \(x+2y\ge-2+2.\left(-11\right)=-23>-25\)

\(\Rightarrow\) Pt vô nghiệm

TH2:  \(x=y+4\) thay vào pt dưới:

\(\sqrt{y+6}+2\sqrt{y+11}=\sqrt{\left(3y+10\right)^3}\)

\(\Leftrightarrow\sqrt{y+6}-2+2\sqrt{y+11}-6=\sqrt{\left(3y+10\right)^3}-8\)

\(\Leftrightarrow\dfrac{y+2}{\sqrt{y+6}+2}+\dfrac{2\left(y+2\right)}{\sqrt{y+11}+3}=\dfrac{3\left(y+2\right)\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-2\Rightarrow x=2\\\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}=\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}\left(1\right)\end{matrix}\right.\)

Xét (1), ta có:

\(\dfrac{1}{\sqrt{y+6}+2}+\dfrac{2}{\sqrt{y+11}+3}< \dfrac{1}{2}+\dfrac{2}{3}< 2\)

\(\dfrac{3\left(3y+14+2\sqrt{3y+10}+4\right)}{\sqrt{3y+10}+2}=\dfrac{3\left(3y+14\right)}{\sqrt{3y+10}+2}+6>2\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(2;-2\right)\)

Bình luận (1)

Các câu hỏi tương tự
DT
Xem chi tiết
LP
Xem chi tiết
MN
Xem chi tiết
MH
Xem chi tiết
TL
Xem chi tiết
DY
Xem chi tiết
KC
Xem chi tiết
H24
Xem chi tiết
LN
Xem chi tiết