Bài 3: Giải hệ phương trình bằng phương pháp thế

PL

\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\x^2-3y^2+2xy-x+5y-2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}3x+5y=9-2xy\\2x+3y=10-xy\end{matrix}\right.\)

Giải hệ phương trình

giúp mình nha sắp phải nộp r

NL
18 tháng 9 2020 lúc 21:35

a.

\(x^2-3y^2+2xy-x+5y-2=0\)

\(\Leftrightarrow\left(x^2+3xy-2x\right)+\left(-3y^2-xy+2y\right)+x+3y-2=0\)

\(\Leftrightarrow x\left(x+3y-2\right)-y\left(x+3y-2\right)+x+3y-2=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y-1\\x=2-3y\end{matrix}\right.\)

Thay lên pt đầu: \(\left[{}\begin{matrix}\left(y-1\right)^2+y^2+y-1+y=8\\\left(2-3y\right)^2+y^2+2-3y+y=8\end{matrix}\right.\)

Bạn tự giải nốt

b.

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=9-2xy\\4x+6y=20-2xy\end{matrix}\right.\)

\(\Rightarrow x+y=11\Rightarrow y=11-x\)

Thay vào pt đầu:

\(3x+5\left(11-x\right)=9-2x\left(11-x\right)\)

Bạn tự giải nốt

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
KY
Xem chi tiết
JB
Xem chi tiết
BH
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
XH
Xem chi tiết
JB
Xem chi tiết
HT
Xem chi tiết