Bài 3: Giải hệ phương trình bằng phương pháp thế

XH

Giải hệ phương trình
\(\left\{{}\begin{matrix}4\left(2x-y+3\right)-3\left(x-2y+3\right)=48\\3\left(3x-4y+3\right)+4\left(4x-2y-9\right)=48\end{matrix}\right.\)

\(\left\{{}\begin{matrix}6\left(x+y\right)=8+2x-3y\\5\left(y-x\right)=5+3x+2y\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2\left(2x+1\right)+1,5=3\left(y-2\right)-6x\\11,5-4\left(3-x\right)=2y-\left(5-x\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{8x-5y-3}{7}+\dfrac{11y-4x-7}{5}=12\\\dfrac{9x+4y-13}{5}-\dfrac{3\left(x-2\right)}{4}=15\end{matrix}\right.\)

\(\left\{{}\begin{matrix}2\sqrt{3}x-\sqrt{5}y=2\sqrt{6}-\sqrt{15}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

NT
13 tháng 12 2022 lúc 15:31

a: \(\Leftrightarrow\left\{{}\begin{matrix}8x-4y+12-3x+6y-9=48\\9x-12y+9+16x-8y-36=48\end{matrix}\right.\)

=>5x+2y=48-12+9=45 và 25x-20y=48+36-9=48+27=75

=>x=7; y=5

b: \(\Leftrightarrow\left\{{}\begin{matrix}6x+6y-2x+3y=8\\-5x+5y-3x-2y=5\end{matrix}\right.\)

=>4x+9y=8 và -8x+3y=5

=>x=-1/4; y=1

c: \(\Leftrightarrow\left\{{}\begin{matrix}-4x-2+1,5=3y-6-6x\\11,5-12+4x=2y-5+x\end{matrix}\right.\)

=>-4x-0,5=-6x+3y-6 và 4x-0,5=x+2y-5

=>2x-3y=-5,5 và 3x-2y=-4,5

=>x=-1/2; y=3/2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x\cdot2\sqrt{3}-y\sqrt{5}=2\sqrt{3}\cdot\sqrt{2}-\sqrt{5}\cdot\sqrt{3}\\3x-y=3\sqrt{2}-\sqrt{3}\end{matrix}\right.\)

=>\(x=\sqrt{2};y=\sqrt{3}\)

Bình luận (0)

Các câu hỏi tương tự
TA
Xem chi tiết
HT
Xem chi tiết
BH
Xem chi tiết
PA
Xem chi tiết
NN
Xem chi tiết
SK
Xem chi tiết
PY
Xem chi tiết
H24
Xem chi tiết
VH
Xem chi tiết