Bài 3: Giải hệ phương trình bằng phương pháp thế

KY

Giải hệ phương trình :

\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\\x^2-3y^2+2xy-x+5y-2=0\end{matrix}\right.\)

MX
27 tháng 8 2018 lúc 12:28

\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\left(1\right)\\x^2-3y^2+2xy-x+5y=0\left(2\right)\end{matrix}\right.\)

Phương trình (2) <=> \(x^2+x\cdot\left(2y-1\right)-3y-3y^2+5y-2=0\)

Coi phương trình là phương trình bậc 2 ẩn x

Ta có : \(\Delta=\left(2y-1\right)^2-4\left(-3y^2+5y-2\right)=\left(4y-3\right)^2\ge0\)

=> Phương trình có 2 nghiệm :

\(\left[{}\begin{matrix}x=-3y+2\\x=y-1\end{matrix}\right.\)

+) x = -3y + 2

Thay vào (1) ta được :

\(\left(2-3y\right)^2+y^2+2-3y+y=8\)

\(5y^2-7y-1=0\)

\(\Delta=69>0\)

=> Phương trình 2 nghiệm

\(\left[{}\begin{matrix}y=\dfrac{7+\sqrt{69}}{10}\\y=\dfrac{7-\sqrt{69}}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1+3\sqrt{69}}{10}\\x=\dfrac{3\sqrt{69}-1}{10}\end{matrix}\right.\)

+) x = y - 1

Thay vào (1) , ta được :

\(\left(y-1\right)^2+y^2+y-1+y=8\)

\(2y^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy ....

Bình luận (0)

Các câu hỏi tương tự
PL
Xem chi tiết
PA
Xem chi tiết
TA
Xem chi tiết
JB
Xem chi tiết
BH
Xem chi tiết
LN
Xem chi tiết
CP
Xem chi tiết
JB
Xem chi tiết
HT
Xem chi tiết