Violympic toán 9

ND

\(\left\{{}\begin{matrix}\left(x+y\right)\left(x+y+z\right)=72\\\left(y+z\right)\left(x+y+z=120\right)\\\left(x+z\right)\left(x+y+z\right)=96\end{matrix}\right.\)

>:)

NL
5 tháng 5 2020 lúc 16:20

(1)+(3)-(2) \(\Rightarrow x\left(x+y+z\right)=24\) (4)

\(\left(1\right)+\left(2\right)-\left(3\right)\Rightarrow y\left(x+y+z\right)=48\) (5)

\(\left(2\right)+\left(3\right)-\left(1\right)\Rightarrow z\left(x+y+z\right)=72\) (6)

Cộng vế với vế: \(\Rightarrow\left(x+y+z\right)^2=144\Rightarrow\left[{}\begin{matrix}x+y+z=12\\x+y+z=-12\end{matrix}\right.\)

- Với \(x+y+z=12\) (7) lần lượt chia vế cho vế cho (4); (5); (6) cho (7)

- Với \(x+y+z=-12\) (8) lần lượt chia vế cho vế của (4); (5); (6) cho (8)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
NU
Xem chi tiết
NM
Xem chi tiết
CP
Xem chi tiết
NM
Xem chi tiết
BL
Xem chi tiết
TH
Xem chi tiết
KA
Xem chi tiết
MH
Xem chi tiết