Giải hệ phương trình : \(\left\{{}\begin{matrix}x\left(x+y+z\right)+yz=238\\y\left(x+y+z\right)+xz=187\\z\left(x+y+z\right)+xy=154\end{matrix}\right.\)
Giải hệ phương trình (x, y, z dương)
\(\left\{{}\begin{matrix}x\left(x-z\right)=-1\\y\left(z+x\right)=8\\z\left(x-y\right)=-3\end{matrix}\right.\)
Giải hệ phương trình:
a)\(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\9yz=20\left(y+z\right)\\8zx=15\left(z+x\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x+y+z=3\\y+z+t=4\\z+t+x=5\\t+x+y=6\end{matrix}\right.\)
Giải hệ:
\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y+z\right)\\4zx=3\left(x+z\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x+y+z\right)=72\\\left(y+z\right)\left(x+y+z=120\right)\\\left(x+z\right)\left(x+y+z\right)=96\end{matrix}\right.\)
>:)
giải hệ phương trình:\(\left\{{}\begin{matrix}3xy=4\left(x+y\right)\\5yz=6\left(y+z\right)\\7zx=8\left(z+x\right)\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}12\left(x+y\right)=5xy\\18\left(y+z\right)=5yz\\36\left(z+x\right)=13zx\end{matrix}\right.\)
giải phương trình bằng cách dùng bất đẳng thức côsi
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=3\\\left(1+x\right)\left(1+y\right)\left(1+z\right)=\left(1+\sqrt[3]{xyz}\right)^3\end{matrix}\right.\)
giải hệ phương trình:
a)\(\left\{{}\begin{matrix}3xy=2\left(x+y\right)\\5yz=6\left(y-z\right)\\4xz=3\left(x+y\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}\\7x-3y+2z=37\end{matrix}\right.\)