Violympic toán 9

NU

Giải hệ phương trình:

a)\(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\9yz=20\left(y+z\right)\\8zx=15\left(z+x\right)\end{matrix}\right.\)

b)\(\left\{{}\begin{matrix}x+y+z=3\\y+z+t=4\\z+t+x=5\\t+x+y=6\end{matrix}\right.\)

NL
1 tháng 7 2020 lúc 11:44

b, Ta có : \(\left\{{}\begin{matrix}x+y+z=3\\y+z+t=4\\z+t+x=5\\t+x+y=6\end{matrix}\right.\)

=> \(x+y+z+y+z+t+z+t+x+t+x+y=18\)

=> \(3\left(x+y+z+t\right)=18\)

=> \(x+y+z+t=6\)

=> \(x+y+z+t=x+y+t\)

=> \(z=0\)

=> \(\left\{{}\begin{matrix}x+y=3\\y+t=4\\x+t=5\\x+y+t=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+y=3\\y+t=4\\x+t=5\\y+5=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x+1=3\\t+1=4\\x+t=5\\y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=2\\t=3\\x+t=5\\y=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=2\\y=1\\z=0\\t=3\end{matrix}\right.\)

Bình luận (0)
NL
1 tháng 7 2020 lúc 12:06

a, Ta có : \(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\9yz=20\left(y+z\right)\\8zx=15\left(z+x\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}7xy-12x-12y=0\\9yz-20y-20z=0\\8zx-15z-15x=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{12y}{7y-12}\\y=\frac{20z}{9z-20}\\x=\frac{15z}{8z-15}\end{matrix}\right.\)

=> \(12y\left(8z-15\right)=15z\left(7y-12\right)\)

=> \(96yz-180y=105yz-180z\)

=> \(105yz-96yz=-180y+180z\)

=> \(9yz=-180y+180z\)

=> \(180z-180y=20y+20z\)

=> \(180z-20z=180y+20y=160z=200y\)

=> \(y=\frac{4}{5}z\)

=> \(\frac{20z}{9z-20}=\frac{4z}{5}\)

=> \(4z\left(9z-20\right)=100z\)

=> \(36z^2-180z=0\)

=> \(\left[{}\begin{matrix}z=5\\z=0\end{matrix}\right.\)

TH1 : z = 0 .

=> \(x=y=z=0\)

TH2 : z = 5 .

=> \(\left\{{}\begin{matrix}7xy=12\left(x+y\right)\\45y=20\left(y+5\right)\\40x=15\left(5+x\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=4\\x=3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
NM
Xem chi tiết
LT
Xem chi tiết
NM
Xem chi tiết
TH
Xem chi tiết
HC
Xem chi tiết
AG
Xem chi tiết