TK

loading...    làm hộ mik nhé trừ câu 12 ra ak cảm ơn nhìu ak

H9
11 tháng 7 2024 lúc 10:19

\(10)\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=3\\\dfrac{3}{x}-\dfrac{2}{y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=6\\\dfrac{3}{x}-\dfrac{2}{y}=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x}=5\\\dfrac{1}{x}+\dfrac{1}{y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{5}=1\\1+\dfrac{1}{y}=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\\dfrac{1}{y}=3-1=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(11)\left\{{}\begin{matrix}x+\dfrac{1}{y}=-\dfrac{1}{2}\\2x-\dfrac{3}{y}=-\dfrac{7}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{2}{y}=-1\\2x-\dfrac{3}{y}=-\dfrac{7}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y}=\dfrac{5}{2}\\x+\dfrac{1}{y}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5:\dfrac{5}{2}=2\\x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2\\x-\dfrac{1}{2}-\dfrac{1}{2}=-1\end{matrix}\right.\)

Bình luận (0)
TK
11 tháng 7 2024 lúc 10:30

làm bằng phương pháp thế nhé. đây là phương pháp đặt ẩn phụ ak

Bình luận (0)
NT
14 tháng 8 2024 lúc 19:41

 

14: ĐKXĐ: \(y\ne-2x;y\ne\dfrac{x}{2}\)

\(\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\\\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=-\dfrac{3}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2x+y}+\dfrac{1}{x-2y}+\dfrac{1}{2x+y}-\dfrac{1}{x-2y}=\dfrac{5}{8}-\dfrac{3}{8}\\\dfrac{1}{2x+y}+\dfrac{1}{x-2y}=\dfrac{5}{8}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{2}{2x+y}=\dfrac{2}{8}\\\dfrac{1}{x-2y}=\dfrac{5}{8}-\dfrac{1}{2x+y}=\dfrac{5}{8}-\dfrac{1}{8}=\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+y=8\\x-2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y+2\\2\left(2y+2\right)+y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2y+2\\5y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x=2\cdot\dfrac{4}{5}+2=\dfrac{8}{5}+2=\dfrac{18}{5}\end{matrix}\right.\left(nhận\right)\)

13: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-1\\y\ne2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\dfrac{x+2}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1+\dfrac{1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{10}{x+1}-\dfrac{2}{y-2}=6\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{11}{x+1}=11\\\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=1\\\dfrac{2}{y-2}=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y-2=\dfrac{2}{4}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{5}{2}\end{matrix}\right.\left(nhận\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
CN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
MR
Xem chi tiết
TN
Xem chi tiết
LM
Xem chi tiết