Có: \(x>y\Rightarrow x-y>0\)
\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)
Áp dụng BĐT Cô-si ta được:
\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}\\ \Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Vì : \(x>y\Rightarrow x-y>0\)
Lại có :\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\Rightarrow x^2+y^2\ge2\sqrt{2}\left(x-y\right)\Rightarrow x^2+y^2\ge2\sqrt{2}x+2\sqrt{2}y\)
\(\Rightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)
\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y+\left(\sqrt{2}\right)^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y-\sqrt{2}\right)^2\ge0\)
=> BĐT đã cho luôn đúng
Dấu '' = '' xảy ra khi : \(\left\{{}\begin{matrix}x-y-\sqrt{2}=0\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\sqrt{2}\\x\left(-y\right)=-1\end{matrix}\right.\)
=> x = -y là nghiệm của phương trình