Bài 1: Căn bậc hai

CT

Giúp mik với.

Cho xy=1 và x>y

Chứng minh rằng : \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

H24
2 tháng 10 2019 lúc 21:58

Có: \(x>y\Rightarrow x-y>0\)

\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=x-y+\frac{2}{x-y}\)

Áp dụng BĐT Cô-si ta được:

\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}\\ \Leftrightarrow\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)

Bình luận (0)
NQ
2 tháng 10 2019 lúc 22:00

Vì : \(x>y\Rightarrow x-y>0\)

Lại có :\(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\Rightarrow x^2+y^2\ge2\sqrt{2}\left(x-y\right)\Rightarrow x^2+y^2\ge2\sqrt{2}x+2\sqrt{2}y\)

\(\Rightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y\ge0\)

\(\Leftrightarrow x^2+y^2-2\sqrt{2}x+2\sqrt{2}y+\left(\sqrt{2}\right)^2-2xy\ge0\)

\(\Leftrightarrow\left(x-y-\sqrt{2}\right)^2\ge0\)

=> BĐT đã cho luôn đúng

Dấu '' = '' xảy ra khi : \(\left\{{}\begin{matrix}x-y-\sqrt{2}=0\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=\sqrt{2}\\x\left(-y\right)=-1\end{matrix}\right.\)

=> x = -y là nghiệm của phương trình

Bình luận (5)

Các câu hỏi tương tự
PA
Xem chi tiết
PW
Xem chi tiết
TT
Xem chi tiết
KB
Xem chi tiết
OH
Xem chi tiết
NM
Xem chi tiết
H24
Xem chi tiết
KM
Xem chi tiết
HT
Xem chi tiết