Giúp em với giải với vẽ hình luôn ạ !
1. Cho tam giác ABC có A là một góc vuông. D là một điểm nằm trên cạnh AB. Đường Tròn đường kính BD cắt BC tại E. Các đường thẳng CD;AE lần lượt cắt đường tròn tại các điểm thứ hai F và G.
a) Chứng minh CAFB nội tiếp
b) Chứng minh AB.ED=AC.EB
c) Chứng tỏ AC//FG
d) Chứng minh AC;DE;BF đồng quy
2.Cho tam giác ABC vuông tại A, đường cao AH. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC, d là tiếp tuyến của đường tròn tại A, các tiếp tuyến của đường tròn tại B và C lần lượt cắt d theo thứ tự ở D và E.
Chứng minh rằng:
a) Tam giác DOE vuông
b) DE = BD + CE
c) BD . CE = R2 ( R là bán kính của (O) )
d) BC là tiếp tuyến của đường tròn đường kính DE.