Bài 4: Ôn tập chương Giới hạn

H24

undefinedgiúp em với em cảm ơn nhiều ạ

NL
17 tháng 3 2022 lúc 23:19

\(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}+nu_n\)

Đặt \(v_n=\dfrac{1}{u_n}\Rightarrow\left\{{}\begin{matrix}v_1=\dfrac{1}{2022}\\v_{n+1}=v_n+\dfrac{n}{v_n}\end{matrix}\right.\) và \(\left\{\dfrac{1}{nu_n}\right\}=\left\{\dfrac{v_n}{n}\right\}\)

Ta sẽ chứng minh \(v_n\ge n\) với \(n>1\)

Với \(n=2\Rightarrow v_2=v_1+2022>2\) (đúng) 

Giả sử điều đó đúng với \(n=k>1\) hay \(v_k\ge k\) 

Ta cần chứng minh \(v_{k+1}\ge k+1\)

Thật vậy, do \(v_k\ge k\), đặt \(v_k=k+\alpha\) với \(\alpha\ge0\)

Khi đó: \(v_{k+1}=v_k+\dfrac{k}{v_k}=k+\alpha+\dfrac{k}{k+\alpha}=k+\dfrac{k\alpha+\alpha^2+k}{k+\alpha}\ge k+\dfrac{\alpha+k}{k+\alpha}=k+1\) (đpcm)

Tương tự, ta quy nạp chứng minh được \(v_n\le n+v_2\) với \(n>1\) (do \(v_2\) số xấu nên ko ghi)

Kiểm tra với \(n=2\Rightarrow v_2\le2+v_2\) (đúng)

Giả sử \(v_k\le k+v_2\)

 \(\Rightarrow v_{k+1}=v_k+\dfrac{k}{v_k}\le k+v_2+\dfrac{k}{v_k}\le k+v_2+\dfrac{k}{k}=k+1+v_2\) (đpcm)

\(\Rightarrow n\le v_n\le n+v_2\) \(\Rightarrow1\le\dfrac{v_n}{n}\le\dfrac{n+v_2}{n}\)

Sử dụng định lý kẹp, dễ dàng suy ra \(\lim\left\{\dfrac{v_n}{n}\right\}=1\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
DK
Xem chi tiết
DK
Xem chi tiết
TM
Xem chi tiết
CN
Xem chi tiết
VH
Xem chi tiết
VH
Xem chi tiết