Bài 4: Ôn tập chương Giới hạn

DK

Cho \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}=7\)

Tính \(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}\)

Giúp em với ạ!!! em cảm ơn nhìu<3

NL
24 tháng 3 2022 lúc 20:02

Đề là \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-5}{x-3}\) hay \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) em?

\(\dfrac{f\left(x\right)-5}{x-3}\) thì giới hạn bên dưới ko phải dạng vô định, kết quả là vô cực

Bình luận (1)
NL
24 tháng 3 2022 lúc 21:49

Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-15=0\) có nghiệm \(x=3\)

\(\Rightarrow f\left(3\right)=15\)

\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt[3]{5f\left(x\right)-11}-4}{x^2-x-6}=\lim\limits_{x\rightarrow3}\dfrac{5f\left(x\right)-75}{\left(x-3\right)\left(x+2\right)\left(\sqrt[3]{\left(5f\left(x\right)-11\right)^2}+4\sqrt[3]{5f\left(x\right)-11}+16\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-15}{x-3}.\dfrac{5}{\left(x+2\right)\left(\sqrt[3]{\left(f\left(x\right)-11\right)^2}+4\sqrt[3]{f\left(x\right)-11}+16\right)}\)

\(=7.\dfrac{5}{5.\left(\sqrt[3]{\left(5.15-11\right)^2}+4\sqrt[3]{5.15-11}+16\right)}=\dfrac{7}{48}\)

Bình luận (1)

Các câu hỏi tương tự
DK
Xem chi tiết
SK
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
TT
Xem chi tiết
DD
Xem chi tiết
SK
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết