\(\left\{{}\begin{matrix}x\left(1-\sqrt{3}\right)+y=2\\3x-\left(\sqrt{3}-1\right)y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)+y\left(\sqrt{3}-1\right)=2\left(\sqrt{3}-1\right)\\3x-\left(\sqrt{3}-1\right)y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(-4+2\sqrt{3}\right)+y\left(\sqrt{3}-1\right)+3x-y\left(\sqrt{3}-1\right)=2\sqrt{3}-2+1\\3x-\left(\sqrt{3}-1\right)y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2\sqrt{3}-1\right)=2\sqrt{3}-1\\y\left(\sqrt{3}-1\right)=3x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3x-1}{\sqrt{3}-1}=\dfrac{2}{\sqrt{3}-1}=\sqrt{3}+1\end{matrix}\right.\)