HD

Giúp đỡ tôi bài này các bạn ơi . Tìm GTLN -GTNN của A = \(\frac{x^2+1}{x^2-x+1}\)

HN
6 tháng 12 2016 lúc 11:37

Cách 1.

Nhận xét : \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) . Do vậy A luôn xác định. Ta có :

\(A=\frac{x^2+1}{x^2-x+1}\Leftrightarrow A\left(x^2-x+1\right)=x^2+1\Leftrightarrow x^2\left(A-1\right)-x.A+\left(A-1\right)=0\)

Tìm GTLN-GTNN tức là tồn tại giá trị x thỏa mãn minA và maxA.

Vậy thì điều kiện cần là phương trình trên có nghiệm, tức là :

\(\Delta=A^2-4.\left(A-1\right)\left(A-1\right)=A^2-4\left(A^2-2A+1\right)=-3A^2+8A-4\ge0\)

Giải bđt trên được \(\frac{2}{3}\le A\le2\)

Vậy : min A = 2/3 khi x = -1

max A = 2 khi x = 1

 

Bình luận (0)
HN
6 tháng 12 2016 lúc 11:40

Cách 2.

Theo nhận xét ở cách 1 thì ta có A luôn xác định.

Ta có : \(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)+\left(x^2+2x+1\right)}{3\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{3\left(x^2-x+1\right)}+\frac{2}{3}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi x = -1

Vậy minA = 2/3 khi x = -1

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=-\frac{\left(x-1\right)^2}{x^2-x+1}+2\le2\)

Đẳng thức xảy ra khi x = 1

Vậy max A = 2 khi x = 1

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NP
Xem chi tiết
TK
Xem chi tiết
HT
Xem chi tiết
TT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết
XT
Xem chi tiết