\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\\ ĐKXĐ:x\ne0;x\ne-\left(a+b\right)\\ \Rightarrow\dfrac{1}{a+b-x}+\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\ \Rightarrow\dfrac{x}{x\left(a+b-x\right)}+\dfrac{a+b-x}{x\left(a+b-x\right)}=\dfrac{b}{ab}+\dfrac{a}{ab}\\ \Rightarrow\dfrac{x+a+b-x}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\\ \Rightarrow\dfrac{a+b}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\)
+) Với \(a\ne-b\Rightarrow x\left(a+b-x\right)=ab\)
\(\Leftrightarrow ax+bx-x^2=ab\\ \Leftrightarrow ax-x^2=ab-bx\\ \Leftrightarrow x\left(a-x\right)=b\left(a-x\right)\\ \Leftrightarrow x\left(a-x\right)-b\left(a-x\right)=0\\ \Leftrightarrow\left(x-b\right)\left(a-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-b=0\\x-a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=b\\x=a\end{matrix}\right.\)
Khi đó : \(\left\{{}\begin{matrix}a\ne0\\a\ne-\left(a+b\right)\\b\ne0\\b\ne-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-a-b\\b\ne0\\b\ne-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\2a\ne-b\\b\ne0\\2b\ne-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-\dfrac{b}{2}\\b\ne0\\b\ne-\dfrac{a}{2}\end{matrix}\right.\)
+) Với \(a=-b\Rightarrow0=0\left(nghiệm\text{ }đúng\text{ }\forall x\right)\)
\(\Rightarrow S=R\)
Vậy với \(a\ne-b;a\ne0;b\ne0;a\ne-\dfrac{b}{2};b\ne-\dfrac{a}{2}\), pt có 2 nghiệm \(x=b;x=a\)
Với \(a=-b\), pt vô số nghiệm