Bài 5: Bảng căn bậc hai

QN

giải pt:

\(2x^2+1=\dfrac{1}{x^2}-4\)

cần gấp ạ

H24
7 tháng 2 2022 lúc 12:57

Đặt x2 = t > 0 ta được

\(2t+1=\dfrac{1}{t}-4\Leftrightarrow2t^2+5t-1=0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\\t=\dfrac{-5-\sqrt{33}}{4}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\) 

Vậy pt có 2 nghiệm

Bình luận (2)
NT
7 tháng 2 2022 lúc 12:57

\(2x^2+1=\dfrac{1}{x^2}-4\left(1\right)\)

Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó phương trình \(\left(1\right)\) trở thành \(2t+1=\dfrac{1}{t}-4\)

\(\Leftrightarrow2t^2+5t-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\left(\text{nhận}\right)\\t=\dfrac{-5-\sqrt{33}}{4}\left(\text{loại}\right)\end{matrix}\right.\)

\(\Rightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{-\sqrt{-5+\sqrt{33}}}{2};\dfrac{\sqrt{-5+\sqrt{33}}}{2}\right\}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PQ
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VP
Xem chi tiết
MM
Xem chi tiết
TN
Xem chi tiết
QV
Xem chi tiết