\(pt\Leftrightarrow\left(9+4\sqrt{5}\right)^{\dfrac{x}{2}}+\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=18\)
Thấy rằng \(9-4\sqrt{5}\) là nghịch đảo của \(9+4\sqrt{5}\)
Do vậy \(\left(9+4\sqrt{5}\right)^{\dfrac{x}{2}}\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=1\)
Đặt \(\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}=t\) ta có pt:
\(t+\dfrac{1}{t}=18\Rightarrow t^2-18t+1=0\Rightarrow t=9\pm4\sqrt{5}\)
Vì vậy \(t=9\pm4\sqrt{5}=\left(9-4\sqrt{5}\right)^{\pm1}=\left(9-4\sqrt{5}\right)^{\dfrac{x}{2}}\)
\(\Rightarrow\dfrac{x}{2}=\pm1\Rightarrow x=\pm2\)
\(\sqrt{\left(9+4\sqrt{5}\right)^x}+\sqrt{\left(9-4\sqrt{5}\right)^x}=18\)
<=>\(\sqrt{\left(5+2.2\sqrt{5}+4\right)^x}+\sqrt{\left(5-2.2.\sqrt{5}+4\right)^x}=18\)
<=>\(\sqrt{\left(\sqrt{5}+2\right)^{2x}}+\sqrt{\left(\sqrt{5}-2\right)^{2x}}=18\)
<=>\(\left(\sqrt{5}+2\right)^x+\left(\sqrt{5}-2\right)^x=18\)
Nhận xét:
x>2 thì VT>18=VP
x<2 thì VT<18=VP
x=2 thì VT=VP
Vậy S={2}