Bài 3: Liên hệ giữa phép nhân và phép khai phương

TH

giải PT

\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)

AH
11 tháng 9 2017 lúc 22:43

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(\sqrt{2x-3}\leq \frac{(2x-3)+1}{2}\)

\(\sqrt{5-2x}\leq \frac{(5-2x)+1}{2}\)

Cộng theo vế:

\(\Rightarrow 3x^2-12x+14=\sqrt{2x-3}+\sqrt{5-2x}\leq \frac{(2x-3)+1}{2}+\frac{(5-2x)+1}{2}\)

\(\Leftrightarrow 3x^2-12x+14\leq 2\Leftrightarrow 3(x-2)^2\leq 0\)

Mà ta luôn biết rằng \((x-2)^2\geq 0\forall x\in\mathbb{R}\)

Do đó dấu bằng xảy ra khi \((x-2)^2=0\Leftrightarrow x=2\)

Thử lại thấy $x=2$ đúng là nghiệm của PT

Bình luận (0)
PA
11 tháng 9 2017 lúc 22:56

\(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\) \(\left(\dfrac{3}{2}\le x\le\dfrac{5}{2}\right)\)

\(\Leftrightarrow\sqrt{2x-3}-1+\sqrt{5-2x}-1=3x^2-12x+12\)

\(\Leftrightarrow\dfrac{2x-3-1}{\sqrt{2x-3}+1}+\dfrac{5-2x-1}{\sqrt{5-2x}+1}=3\left(x-2\right)^2\)

\(\Leftrightarrow\dfrac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\dfrac{2\left(2-x\right)}{\sqrt{5-2x}+1}-3\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[\dfrac{2}{\sqrt{2x-3}+1}-\dfrac{2}{\sqrt{5-2x}+1}-3\left(x-2\right)\right]\left(x-2\right)=0\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
ND
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
HA
Xem chi tiết
BA
Xem chi tiết
TT
Xem chi tiết
HN
Xem chi tiết
TH
Xem chi tiết