Ôn tập chương 1: Căn bậc hai. Căn bậc ba

HB

giải pt sau:\(\sqrt{4x^2-4x+1}=x-16\)

TN
19 tháng 10 2018 lúc 23:05

\(\sqrt{4x^2-4x+1}=x-16\)

\(\sqrt{\left(2x-1\right)^2}=x-16\)

\(\left|2x-1\right|\) = \(x-16\)

\(\left[{}\begin{matrix}2x-1=x-16\\2x-1=16-x\end{matrix}\right.\)

\(\left[{}\begin{matrix}2x-x=-16+1\\2x+x=16+1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-15\\x=\dfrac{17}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-15;\dfrac{17}{3}\right\}\)

Bình luận (0)
H24
20 tháng 10 2018 lúc 14:31

Ta có: \(4x^2-4x+1=\left(2x-1\right)^2\ge0\forall x\)

ĐKXĐ: Với mọi giá trị thực của x.

\(\sqrt{4x^2-4x+1}=x-16\) (1)

\(\Leftrightarrow\) \(\sqrt{\left(2x-1\right)^2}=x-16\)

\(\Leftrightarrow\) \(\left|2x-1\right|=x-16\) (2)

- Nếu \(x\ge\dfrac{1}{2}\), hay \(2x-1\ge0\) thì ta có:

(2) \(\Leftrightarrow\) \(2x-1=x-16\)

\(\Leftrightarrow\) \(x=-15\) (loại vì \(x\ge\dfrac{1}{2}\) )

- Nếu \(x< \dfrac{1}{2}\), hay \(2x-1< 0\) thì ta có:

(2) \(\Leftrightarrow\) \(1-2x=x-16\)

\(\Leftrightarrow\) \(3x=17\)

\(\Leftrightarrow\) \(x=\dfrac{17}{3}\) (loại vì \(x< \dfrac{1}{2}\) )

Vậy phương trình (1) vô nghiệm.

Bình luận (1)

Các câu hỏi tương tự
LT
Xem chi tiết
LT
Xem chi tiết
NC
Xem chi tiết
LT
Xem chi tiết
VC
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
HT
Xem chi tiết