\(\dfrac{140}{x}+5=\dfrac{\left(140+10\right)}{x-1}\left(x\ne0,x\ne1\right)\)
\(\Leftrightarrow\dfrac{140+5x}{x}=\dfrac{150}{x-1}\)
\(\Leftrightarrow\left(x-1\right)\cdot\left(140+5x\right)=150x\)
\(\Leftrightarrow140x+5x^2-140-5x-150x=0\)
\(\Leftrightarrow5x^2-15x-140=0\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(N\right)\\x=-4\left(N\right)\end{matrix}\right.\)
\(S=\left\{7,-4\right\}\)
ĐK: `x \ne 0 ; x \ne -1`
`140/x+5=150/(x-1)`
`<=>(140+5x)/x=150/(x-1)`
`<=>(140x+5x)(x-1)=150x`
`<=>5x^2+135x-140=150x`
`<=>5x^2-15x-140=0`
`<=>` \(\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy...
Với \(x\ne0;x\ne1\), ta có:
(Mình không viết lại đề nữa nhé!)
\(\Leftrightarrow\dfrac{140+5x}{x}=\dfrac{150}{x-1}\)
\(\Rightarrow\left(140+5x\right)\left(x-1\right)=150x\)
\(\Leftrightarrow140x-140+5x^2-5x=150x\)
\(\Leftrightarrow5x^2-15x-140=0\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow x^2+4x-7x-28=0\)
\(\Leftrightarrow x\left(x+4\right)-7\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=7\end{matrix}\right.\) (TM)
Vậy...